

EPD Transparency Summary

COMPANY NAME
PRODUCT NAME
PRODUCT DESCRIPTION
PRODUCT CATEGORY RULE PCR)+ VERSION
CERTIFICATION PERIOD

PLACE HI RESOLUTION IMAGE HERE

EPD TYPE

PRODUCT SPECIFIC

INDUSTRY AVERAGE

DECLARED/
FUNCTIONAL UNIT

DECLARATION NUMBER

GREEN BUILDING QUALIFICATIONS

LEED v4 Building Product Disclosure and Optimization - EPDs, Option 1 ASHRAE 189.1 Material Compliance

IgCC Material Compliance Green Globes 3.5.1.2.1 NAHB Material Selection

REFERENCE SERVICE LIFE (IF APPLICABLE)

LCA SOFTWARE + VERSION

IMPACT ASSESSMENT METHOD + VERSION

LIFECYCLE IMPACT CATEGORIES

The environmental impacts listed below were assessed through the product's production phase (cradle to gate impacts).

ATMOSPHERE			WATER		EARTH		
		0		8		E .	A
	Global Warming Potential refers to long-term changes in global weather patterns that are caused by increased concentrations of greenhouse gases in the atmosphere.	Ozone Depletion Potential is the destruction of the stratospheric ozone layer, which shields the earth from ultraviolet radiation that's harmful to life, caused by human-made air pollution.	Photochemical Ozone Creation Potential happens when sunlight reacts with hydrocarbons, nitrogen oxides, and volatile organic compounds, to produce air pollution known as smog.	Acidification Potential is the result of human-made emissions and refers to the decrease in pH and increase in acidity of oceans, lakes, rivers, and streams – polluting groundwater and harming aquatic life.	Eutrophication Potential occurs when excessive nutrients cause increased algae growth in lakes, blocking the underwater penetration of sunlight needed to produce oxygen and resulting in the loss of aquatic life.	Depletion of Abiotic Resources (Elements) refers to the reduction of available non- renewable resources, such as metals, that are found on the periodic table of elements, due to human activity.	Depletion of Abiotic Resources (Fossil Fuels) refers to the decreasing availability of non- renewable carbon- based compounds, such as oil and coal, due to human activity.
TRACI	kg CO ₂ -Equiv.	kg CFC 11-Equiv.	kg O ₃ -Equiv.	kg SO ₂ -Equiv.	kg N-Equiv.	kg Sb-Equiv.	MJ
CML	kg CO ₂ -Equiv.	kg R11-Equiv.	kg Ethene-Equiv.	kg SO ₂ -Equiv.	kg PO ₄ -Equiv.	kg Sb-Equiv.	MJ

Environment

© 2018 UL Environment

COMPONENT			VAILABILITY	MASS%	ORIGIN	
	ı	TAL INFOR	MATION %	RECYCLING OR REUS	E	
PRE-CONSUMER RECYCLED	CONTENT	TAL INFOR		RECYCLING OR REUS	E	
PRE-CONSUMER RECYCLED	CONTENT	TAL INFOR	%	RECYCLING OR REUS	E	
PRE-CONSUMER RECYCLED POST-CONSUMER RECYCLE VOC EMISSIONS	CONTENT	TAL INFOR	%	RECYCLING OR REUS	SE	
PRE-CONSUMER RECYCLE POST-CONSUMER RECYCLE VOC EMISSIONS WATER CONSUMPTION	CONTENT	TAL INFOR	%	RECYCLING OR REUS		ICATIONS
PRE-CONSUMER RECYCLE POST-CONSUMER RECYCLE VOC EMISSIONS WATER CONSUMPTION ENERGY	CONTENT	TAL INFOR	%			ICATIONS
PRE-CONSUMER RECYCLED POST-CONSUMER RECYCLED VOC EMISSIONS WATER CONSUMPTION ENERGY RENEWABLE ENERGY	CONTENT CONTENT		%			ICATIONS
PRE-CONSUMER RECYCLED POST-CONSUMER RECYCLED VOC EMISSIONS WATER CONSUMPTION ENERGY RENEWABLE ENERGY NON-RENEWABLE ENERGY	CONTENT CONTENT	% %	% % MJ			ICATIONS
PRE-CONSUMER RECYCLED POST-CONSUMER RECYCLED VOC EMISSIONS WATER CONSUMPTION ENERGY RENEWABLE ENERGY NON-RENEWABLE ENERGY	CONTENT CONTENT	% %	% % MJ			ICATIONS
RENEWABLE ENERGY NON-RENEWABLE ENERGY MANUFACTURER	CONTENT CONTENT	% %	% % MJ			ICATIONS
PRE-CONSUMER RECYCLED POST-CONSUMER RECYCLED VOC EMISSIONS WATER CONSUMPTION ENERGY RENEWABLE ENERGY NON-RENEWABLE ENERGY MANUFACTURER NAME	CONTENT CONTENT	% %	% % MJ			ICATIONS

© 2018 UL Environment

www.UL.com/environment | environment@ul.com