

Declaration Owner

Owens Corning Insulating Systems, LLC
One Owens Corning Parkway, Toledo, OH, USA
1-800-GET-PINK (1-800-438-7465)
www.owenscorning.com

Products

700 Series Fiberglas™ Insulation

Declared Unit

1 m² of insulation

EPD Number and Period of Validity

SCS-EPD-10297 EPD Valid December 9, 2024 through December 8, 2029

Product Category Rule

PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements. Version 4.0. March 2022.

PCR Guidance for Building-Related Products and Services Part B: Mechanical, Specialty, Thermal, and Acoustic Insulation Product EPD Requirements. Version 1.0. September 2019.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration Owner:	Owens Corning Insulating Systems, LLC				
Address:	One Owens Corning Parkway, Toledo, OH, USA				
Declaration Number:	SCS-EPD-10297				
Declaration Validity Period:	December 9, 2024 through December 8, 2029				
Product:	700 Series Fiberglas™ Insulation				
Program Operator:	SCS Global Services				
Declaration URL Link:	https://www.scsglobalservices.com/certified-gre	en-products-guide			
Declared Unit:	1 m ² of insulation				
RSL:	75 Years				
Market of Applicability:	North America				
EPD Type:	Product-specific				
Range of Dataset Variability:	N/A				
EPD Scope:	Cradle to gate with options (A1-A5, C2, C4)				
Reference Year of Manufacturer Data:	2023				
LCA Practitioner:	Aspire Sustainability LLC				
LCA Software:	SimaPro 9.5.0.0				
LCI Database:	Ecolnvent 3.10.0				
LCIA Methodology:	TRACI 2.1 v1.09; CML I-A baseline v4.7; IPCC (20	13)			
Independent critical review of the LCA					
and data, according to ISO 14044 and	☐ internal				
ISO 14071					
LCA Reviewer:	alson Mad	el/			
ECA REVIEWEI.	Abby Martell, SCS (
Part A	PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment				
Product Category Rule:	Calculation Rules and Report Requirements. Ver	rsion 4.0. UL Environment. Mar. 2022.			
PCR Review conducted by:	Lindita Bushi, PhD (Chair); Hugues Imbeault-Téti	reault, ing., M.Sc.A.; Jack Geibig			
Part B	PCR Guidance for Building-Related Products and				
Product Category Rule:	Thermal, and Acoustic Insulation Product EPD R				
Part B PCR Review conducted by:	Hugues Imbeault-Tetreault (Chair), Group AGEC Consultants; Andre Omer Desjarlais, Oak Ridge	9,			
Independent verification of the	22 22, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· · · · · · ,			
declaration and data, according to ISO	□ internal	⊠ external			
14025, ISO 21930, and the PCR	_ meeria	= CACCITION			
	AL ha	1011			
EPD Verifier:	Alston Man				
	Abby Martell, SCS (Global Services			
	1.About Company Name	2			
	2.Product				
	3. LCA: Calculation Rules				
Declaration Contents:	4. LCA: Scenarios and Additional Technical Informat				
	5. LCA: Results				
	7. Additional Environmental Information				
	8. References				
	0.75 4.40.40 4.40.44 / 24.020				

Disclaimers: This EPD conforms to ISO 14025, 14040, 14044, and 21930.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled. In accordance with ISO 21930:2017, EPDs are comparable only if they comply with the core PCR, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works. The owner of the declaration shall be liable for the underlying information and evidence; SCS shall not be liable with respect to manufacturer information, life cycle assessment data, and evidence supplied or made available to SCS.

1. About Owens Corning

Founded in 1938, Owens Corning is a global building and construction materials leader committed to building a sustainable future through material innovation. Our four integrated businesses – Composites, Doors, Insulation, and Roofing – provide durable, sustainable, energy-efficient solutions that leverage our unique material science, manufacturing, and market knowledge to help our customers win and grow.

This Environmental Product Declaration is representative of the products produced at the location listed below.

Newark Plant Newark, OH, USA

2. Product

2.1 Product Identification and Specification

700 Series Fiberglas™ Insulation boards are made of inorganic glass fibers with a thermosetting resin binder and formed into semi-rigid or rigid rectangular boards.

700 Series Fiberglas™ Insulation boards are manufactured by Owens Corning in Newark, OH, USA. The following products are considered part of the 700 series Fiberglas™ insulation board product portfolio,

but are marketed under different product names depending on the application:

- 700 Series Fiberglas™ Insulation
- Fabrication Board
- Ceiling Board
- Fiberglas™ Insul-Quick®

The Construction Specification Institute (CSI) codes covered by the subcategory PCR applicable to 700 series Fiberglas™ insulation board are listed below.

- 07 21 00
 - o 07 21 13 Board Insulation
- 23 07 00 HVAC Insulation
 - o 23 07 13 Duct Insulation

2.2 Flow Diagram

2.3 Product Average

This Environmental Product Declaration reflects production of 700 Series Fiberglas™ Insulation boards at a single Owens Corning site, located in Newark, OH, USA.

2.4 Application

700 Series Fiberglas™ Insulation Boards

Type 703: Semi-rigid boards for use on mechanical equipment and air conditioning ductwork, and walls and ceilings.

Type 705: A high-strength rigid board for use on chillers, other mechanical equipment, walls and ceilings, and heating and air conditioning ductwork, where high-abuse resistance and good, finished appearance is important.

© 2024 SCSglobalServices.com

Type 703 and 705: Available unfaced or with factory-applied FRK or poly-encapsulated ASJ Max facings. Both facings are vapor retarders and provide a neat, finished appearance in mechanical applications.

Type 706 and 707: Insulation for use in acoustical wall panels and specialized ceiling applications.

Fabrication Board: Owens Corning Fiberglas™ Fabrication Board supplied in 36" x 48" board sizes is designed for use by manufacturers producing fiberglass elbow pipe fittings for the mechanical market.

Ceiling Board: Owens Corning Fiberglas™ Ceiling Board Basic is a fiberglass board designed for ceiling tile manufacturers to use in their product offering of acoustic ceiling tiles, baffles, and wall panel systems.

Fiberglas™ Insul-Quick®: Insulation designed for use on power and process boilers, breechings, ducts, precipitators, chimney liners, and other heated equipment operating at temperatures up to 850°F (454°C). It is used in applications where an outside facing of metal or metal mesh with a finishing cement is required. It can also be used as insulation in a metal panel system.

2.5 Material Composition

700 Series Fiberglas™ Insulation boards consist of two major components, the glass fiber and the binder system. The fiberglass is made from various inorganic materials, which are referred to as batch minerals and are adhered with the binder materials. The use of glass cullet in the batch results in recycled content in the final products – actual recycled content amounts are available through the SCS Global Services Certified Green Products Guide (https://www.scsglobalservices.com/certified-green-products-guide).

Table 1. Batch and Binder Composition

Component	Composition % (by Mass)					
Batch						
Cullet	25-75%					
Sand	25-50%					
Borates	<5%					
Oxides	1-2%					
	Binder					
Phenol Urea Formaldehyde Resin	<10%					
Additives	<1%					

^{*}No substances required to be reported as hazardous or substances of very high concern are associated with the production of this product.

700 Series Fiberglas™ Insulation is available with two factory-applied facing options: FRK (foil-reinforced Kraft) and ASJ Max (All-Service Jacket Max).

Table 2. Facing Composition

Component	Function	Composition % (by Mass)
	FRK	
Aluminum Foil	Exterior Layer	15-18%
Elastomeric Polymer	Barrier Coating	11-14%
Fiberglass Mat	Reinforcement	17-20%
Emulsion	Adhesive	11-14%
Natural Kraft	Interior Layer	46-49%
	ASJ Max	
Polymer Film	Exterior Layer	25-28%
Proprietary	Core	37-40%
Fiberglass Mat	Reinforcement	22-25%
Aluminum Foil	Interior Layer	10-13%

2.6 Technical Data

The following tables provide technical specifications for 700 Series Fiberglas™ Insulation.

 Table 3. Physical properties for 700 Series Fiberglas™ Insulation – Types 703 and 705

Property	Test Method	Res	sult	
Density (size dependent)	ASTM C303	Type 703: 3.0 pcf (48 Type 705: 6.0 pcf (96	· ·	
Operating Temperature Range ¹	ASTM C411	0 to 450°F (-18 to 232	2°C)	
Water Vapor Sorption	ASTM C1104	<2% by weight at 120)°F (49°C), 95% R.H.	
Fungi Resistance	ASTM C1338	Meets requirements		
Compressive Strength (minimum) At 10% deformation At 25% deformation	ASTM C165	703 board 25 lb/ft² (1197 Pa) 90 lb/ft² (4309 Pa)	705 board 200 lb/ft² (9576 Pa)	
Jacket Temperature Limitation	ASTM C1136	-20°F to 150°F (-29°C	to 66°C)	
Jacket Permeance	ASTM E96, Proc. A	ASJ Max: 0.01 perm FRK: 0.02 perm		
Burst Strength (minimum)	ASTM D774/D774M	ASJ Max: 100 psi FRK: 40 psi		
Corrosion to Copper and Aluminum	ASTM C1936 (Previously ASTIM C665)	Pass – copper and aluminum		
Corrosion to Steel	ASTM C1617	Pass – steel		
Stress Corrosion Evaluation on external stress corrosion cracking tendency of austenitic stainless steel	ASTM C795 and ASTM C692	Pass		
Chemical Analysis for Cl-, Fl-, Na+, SiO ₃	ASTM C795 and ASTM C871	Results fall within acc	eptability limits	
Surface Burning Characteristics ²	UL 723, ASTM E84, and CAN/ULC S102	Faced: Flame Spread Index 2 Smoke Developed Ind Unfaced: Flame Spread Index 5 Smoke Developed Ind	dex 50 5	

 $^{^{1}\}text{Maximum}$ thickness at 450°F (232°C) – 703 and 705: 4" (102 mm).

²The surface burning characteristics of this product have been determined in accordance with UL 723, ASTM E84, and CAN/ULC S102. Values are reported to the nearest five rating.

Table 4. Physical properties for 700 Series Fiberglas™ Insulation – Types 706 and 707

Property	Test Method	Result
Density (size dependent)	ASTM C303	Type 706: 6.0 pcf (96 kg/m ³) Type 707: 7.0 pcf (112 kg/m ³)
Operating Temperature Range ¹	ASTM C411	0 to 450°F (-18 to 232°C)
Water Vapor Sorption	ASTM C1104	<2% by weight at 120°F (49°C), 95% R.H.
Fungi Resistance	ASTM C1338	Meets requirements
Corrosion to Copper and Aluminum	ASTM C1936 (Previously ASTIM C665)	Pass – copper and aluminum
Corrosion to Steel	ASTM C1617	Pass – steel
Surface Burning Characteristics ²	UL 723, ASTM E84, and CAN/ULC S102	Unfaced: Flame Spread Index 5 Smoke Developed Index 5

 $^{^{1}}$ Maximum thickness at 450°F (232°C) – 703 and 705: 4" (102 mm).

Table 5. Physical properties for Fiberglas™ Insul-Quick® Insulation

Property	Test Method	Result
Hot Surface Performance	ASTM C411	Up to 850°F (454°C) Maximum thickness 6" (152 mm) Up to 650°F (343°C) Maximum thickness 8" (203 mm)
Compressive Strength At 10% deformation At 20% deformation	ASTM C165	90 lb/ft² (4309 Pa) 130 lb/ft² (6225 Pa)
Nominal Density	ASTM C303	3.0 pcf (48 kg/m ³)
Water Vapor Sorption	ASTM C1104	< 2.0% by weight, at 120°F (49°C), 95% R.H.
Surface Burning Characteristics ¹	UL 723, ASTM E84, or CAN/ULC- S102	Flame Spread < 25 Smoke Developed < 50

¹The surface burning characteristics of this product have been determined in accordance with UL 723, ASTM E84, and CAN/ULC S102. Values are reported to the nearest five rating.

²The surface burning characteristics of this product have been determined in accordance with UL 723, ASTM E84, and CAN/ULC S102. are reported to the nearest five rating.

Table 6. Physical properties for Fiberglas™ Fabrication Board Insulation

Property	Test Method	Result
Density	ASTM C303	4.5 pcf (72 kg/m ³)
Operating Temperature Range	ASTM C411	Board Thickness Direction 0 to 450°F (-18 to 232°C) Board Rotated 90 Degrees 0 to 850°F (-18 to 454°C)
Water Vapor Sorption	ASTM C1104	< 5.0% by weight, at 120°F (49°C), 95% R.H.
Fungi Resistance	ASTM C1338	Meets requirements
Odor Emission	ASTM C1304	Meets requirements
Linear Shrinkage	ASTM C356	< 2% at maximum use temperature
Compressive Strength At 10% deformation At 20% deformation	ASTM C165	90 lb/ft² (4309 Pa) 130 lb/ft² (6225 Pa)
Corrosion to Copper and Aluminum	ASTM C1936 (Previously ASTM C665)	Pass – copper and aluminum
Corrosion to Steel	ASTM C1617	Pass – steel
Stress Corrosion Evaluation on external stress corrosion cracking tendency of austenitic stainless steel	ASTM C795 and ASTM C692	Pass
Chemical Analysis for Cl-, Fl-, Na+, SiO3	ASTM C795 and ASTM C871 ¹	Results fall within acceptability limits
Surface Burning Characteristics ²	UL 723, ASTM E84, and CAN/ULC S102	Faced Flame Spread Index 25 Smoke Developed Index 50 Unfaced Flame Spread Index 5 Smoke Developed Index 5

¹Maximum thickness of 4" (102 mm)

Ceiling Board products are manufactured to individual customer specifications. Because of this, technical data are not available publicly, but may be made available to customers upon request.

2.7 Properties of Declared Product as Delivered

When installed according to all applicable Owens Corning specifications, recommendations, and guidelines, 700 Series Fiberglas™ Insulation delivers its advertised properties. For product availability and additional product property details, visit the specific product pages through www.owenscorning.com.

²The surface burning characteristics of this product have been determined in accordance with UL 723, ASTM E84, and CAN/ULC S102. Values are reported to the nearest five rating.

3. LCA: Calculation Rules

3.1 Declared Unit

 $1m^2$ of installed insulation with a building service life of 75 years, including packaging. To allow for better comparability and scaling of product, this study also defined the declared unit to have a thickness that gives an average thermal resistance $R_{SI} = 1 m^2 \cdot K/W$.

Table 7. Declared unit and reference flows.

Name	Unit	Value
Declared Unit	m^2	1
Mass (R _{SI} = 1)	kg	2.25
Density	kg/m³	68.28
Thickness (R _{SI} = 1)	cm	3.30

3.2 System Boundary

This declaration is a product-specific EPD and represents cradle-to-installation with end-of-life. Details of the system boundaries may be found in the diagrams below. No known flows have been deliberately excluded from this EPD.

Table 8. System boundary

P	roduct			ruction ocess				Use					End-	of-life		Benefits and loads beyond the system boundary
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Raw material extraction and processing	Transport to manufacturer	Manufacturing	Transport	Construction - installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, recovery and/or recycling potential
Х	х	Х	х	X	MND	MND	MND	MND	MND	MND	MND	MND	х	MND	х	MND

x = Included in system boundary | MND = Module not declared

Figure 1. Flow diagram/System Boundary for unfaced fiberglass insulation.

Figure 2. Flow diagram/System Boundary for insulation facing.

3.3 Reference Service Life and Estimated Building Service Life

As prescribed in the applicable PCR, the Reference Service Life (RSL) of the insulation product is 75 years, which aligns with an assumed building Estimated Service Life (ESL) of 75 years, for the purposes of this study.

3.4 Allocation

Allocation of primary data was used in this study. In some cases, primary data collected from manufacturing sites were provided on a facility-wide basis and then allocated to the specific insulation product based on production volume (by mass). The types of production activities for the products manufactured at a given manufacturing facility are similar, so mass allocation is considered an acceptable allocation strategy.

3.5 Cut-off criteria

The underlying LCA study is in compliance with the cutoff criteria specified in the PCR. Due to the long lifetime of equipment, capital goods and infrastructure flows were excluded as having a negligible impact on the conclusions of the LCA.

3.6 Data Sources

Primary manufacturing data were collected from the included manufacturing locations listed in the Manufacturing section. Secondary data primarily reference the ecoinvent 3.10.0 database. Table 10 provides LCA modeling data sources. Minor components that have a negligible effect on impact category results are omitted from this table.

Table 9. Data Sources

Modules	Flow / Modeled Unit Process	Flow / Modeled Unit Process Ecoinvent 3.10.0 Process Dataset(s)			
Product Materi	als		Year		
	Batch Materials				
A1	Borate	Borax, anhydrous, powder {RoW} borax production	2023		
A1	Cullet	Glass cullet, sorted {RoW} treatment of waste glass from unsorted public collection, sorting	2015		
A1	Manganese dioxide	Manganese dioxide {GLO} manganese dioxide production	2023		
A1	Sand	Silica sand {RoW} silica sand production	2023		
A1	Sand Alumina	Silica sand {RoW} silica sand production	2023		
		Aluminium oxide, non-metallurgical {RoW} market	2019		
	Binder Materials				
A1	Phenolic resin	Formaldehyde {RoW} market for formaldehyde	2011		
		Phenol {RER} phenol production, cumene oxidation	2023		
		Methanol {RoW} market for methanol	2018		
		Tap water {RoW} market for tap water	2019		
A1	Urea	Urea {RoW} urea production	2020		
	Facing Materials				
A1	Aluminum Foil	Aluminium, primary, ingot {RoW} market for	2023		
		Sheet rolling, aluminium {RoW} processing	2023		
A1	Barrier Coating, Elastomeric Polymer	Polybutadiene {RoW} polybutadiene production	2023		
A1	Fiberglass	Glass fibre {RoW} production	2023		
A1	Adhesive, Emulsion	Polyester resin, unsaturated {RoW} market for polyester resin	2011		
A1	Natural Kraft	Kraft paper {RoW} kraft paper production	2023		
A1	White Polypropylene Film	Polypropylene, granulate {RoW} production	2019		
		Extrusion, plastic film {RoW} extrusion, plastic film	2020		
A1	Core	Kraft paper {RoW} kraft paper production	2023		
Electricity/Heat	/Resources for Manufacturing				
A3	Electricity - Newark	Electricity, medium voltage {Newark 2024 - RFC} market for electricity	2023		
A3	Water	Tap water {RoW} tap water production, conventional treatment	2020		
A3	Natural Gas	Natural gas, high pressure {US} market for natural gas	2023		
Transportation					
- A2	Rail	Transport, freight train {US} diesel	2020		
- A2 - A3 - A4 - A5 - C2 -	Truck	Transport, freight, lorry >32 metric ton, EURO5 {RoW} transport, freight	2022		

3.7 Data Quality

Primary data were based on measured and calculated data from the Newark, OH, USA Owens Corning plant and reflect calendar year 2023 production. It meets requirements for completeness along with temporal, geographical and technological representativeness. Background data were taken from the ecoinvent database, which is on the approved database list in the PCR.

 Table 10. Data quality assessment

Data Quality Parameter	Data Quality Discussion
Time-related Coverage: Age of data and the minimum length of time over which data is collected	Primary data were based on Owens Corning's annual operations during calendar year 2023, consistent with the goal and scope of this analysis. The time coverage of secondary data is provided in the Background Data section.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The geographical coverage for this study is Newark, OH, USA. As such, primary data were sourced directly from this manufacturing location. The geographical coverage of secondary data is provided in the Background Data section.
Technology Coverage: Specific technology or technology mix	Technological representativeness was based on primary manufacturing data from the Owens Corning facilities included in the study.
Precision: Measure of the variability of the data values for each data expressed	Primary data were based on measured and calculated data from the Owens Corning plant which manufactures products covered by this study. The facility data were collected for the reference year 2023, and several sources were used to compare collected values and ensure precision. The data precision is therefore deemed to be of high quality for all measured and calculated data.
Completeness: Percentage of flow that is measured or estimated	Primary data were based on measured and calculated data from the two Owens Corning plants which manufacture products covered by this study. The facility data were collected for the reference year 2023, and several sources were used to compare collected values and ensure precision. The data precision is therefore deemed to be of high quality for all measured and calculated data.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	All relevant process steps within the system boundary were considered. The primary data provided for fiberglass insulation manufacturing were benchmarked with data collected for previous models which have undergone third party review.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	Data sets used in the underlying LCA study were selected based on the most appropriate temporal, geographical, and technological representation of the actual processes and technology. These data sets reflect average processes from multiple sources, and thus generally represent the actual technology utilized to produce the materials. Still, it is often unknown the extent to which secondary data sets deviate from the specific system being studied.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	To ensure consistency, only primary data of the same level of detail and equivalent time interval (i.e., one calendar year) were used, and allocation was conducted similarly for all data categories and life cycle stages. All background data were sourced from the ecoinvent 3.10.0 database selecting the most appropriate geography.
Sources of the Data: Description of all primary and secondary data sources	Primary data for raw material consumption, inbound transportation, annual production, energy consumption, water consumption, emissions to air, waste generation, packaging usage, and distribution of finished goods were used in this study. Secondary data sets were selected from the ecoinvent 3.10.0 database.
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	The reproducibility of the study results is merited by the scope information provided in the underlying LCA report. Due to confidentiality of the data values, however, certain details were omitted from this public facing EPD, which may limit reproducibility by the public.

3.8 Period under review

The period of review is calendar year 2023.

3.9 Comparability

The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled. In addition, comparability of EPDs is limited to those applying a functional unit.

Environmental declarations from different programs (ISO 14025) may not be comparable. Comparison of the environmental performance of Mechanical Insulation products using EPD information shall be based on the product's use and impacts at the construction works level, and therefore EPDs may not be used for comparability purposes when not considering the constructions works energy use phase as instructed under this PCR. Full conformance with the PCR for Mechanical Insulation products allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same sub-category Part B PCR, and use equivalent scenarios with respect to construction works. However, variation and deviations are possible.

3.10 Estimates and Assumptions

The ability of LCA to consider the entire life cycle of products makes it an attractive tool for the assessment of potential environmental impacts. Nevertheless, similar to other environmental management analysis tools, LCA has several limitations related to data quality and unavailability of potentially relevant data. It should be kept in mind that the impact assessment results are relative expressions and do not predict impacts on category endpoints, exceeding thresholds, or risks.

The study was conducted by including the relevant system boundaries and best available data 700 Series Fiberglas™ Insulation products, using a consistent data collection method and timeframe. In cases where data were reported for the entire facility rather than for the specific insulation materials product, mass allocation was used to allocate the facility-wide impacts to the specific product. This assumes that all products equally consume facility inputs and contribute to facility outputs.

4. LCA: Scenarios and Additional Technical Information

4.1 Manufacture

700 Series Fiberglas™ Insulation consists of two major components, the glass fiber and the binder system. The glass fiber is made from various inorganic materials, which are referred to as batch chemicals. 700 Series Fiberglas™ Insulation utilizes a phenol-urea-formaldehyde (PUF) binder system. The diagram below provides an overview of the manufacturing process.

Figure 3. Manufacturing process diagram.

4.2 Packaging

700 Series Fiberglas™ insulation is packaged on pallets and secured and protected using a combination of polyethylene and corrugated materials. End-of-life primary data were unavailable for packaging materials, so this study used the assumptions from UL PCR Part A, Section 2.8.5, Table 3 (Packaging Disposal Assumptions by Region) for the United States.

Table 11. Packaging type and composition for 700 Series Fiberglas™ insulation.

Packaging Type	Packaging Composition
Cartons	Corrugated
Labels	Paper
Films	Low-Density Polyethylene (LDPE)
Pallets	Wood

4.3 Transport to the Building Site (A4)

700 Series Fiberglas™ insulation is transported away from the manufacturing site by truck. The details for the insulation and facing materials are provided separately in the tables below.

Table 12. Product distribution parameters, per 1 m^2 700 Series Fiberglas[™] insulation at R_{SI} = 1.

Name	Unit	Value		
Vehicle type	Transport, freight, lorry >32 metric ton, EURO5 {RoW}			
Fuel type	Diesel, low-sulfur			
Liters of fuel	l/100km	9.80E-03		
Transport distance	km	4.84E+01		
Capacity utilization	%	63%		
Gross density of products transported	kg/m³	6.83E+01		
Capacity utilization volume factor	-	1		

Table 13. Product distribution parameters, per 1 m² facing material.

Name	Unit	Foil Reinforced Kraft Facing	ASJ Max Facing	
Vehicle type		Transport, freight, lorry >32 metric ton, EURO5 {RoW}		
Fuel type		Diesel, low-sulfur		
Liters of fuel	l/100km	4.58E-04	7.20E-04	
Transport distance	km	1.15E+03	1.15E+03	
Capacity utilization	%	63%	63%	
Gross density of products transported	kg/m³	5.05E+02	7.03E+02	
Capacity utilization volume factor	-	1	1	

.....

4.4 Installation into the Building (A5)

700 Series Fiberglas™ insulation delivers its advertised properties when used and installed according to the manufacturer's instructions. For additional technical information, please visit the product detail pages, available through www.owenscorning.com.

Table 14. Installation summary

Name	Unit	Value
Ancillary materials (per m²)	kg	0.00E+00
Water consumption specified by water source and fate	m ³	0.00E+00
Other resources		0.00E+00
Electricity consumption	kwh	0.00E+00
Other energy carriers	MJ	0.00E+00
Product loss per functional unit	kg	0.00E+00
Waste materials at the construction site before waste processing, generated by product installation		3.98E-01
Output materials resulting from on-site waste processing	kg	0.00E+00
Mass of packaging waste specified by type (Plastics / Pulp)	kg	2.90E-03 / 3.95E-01
Recycle (Plastics / Pulp)	kg	4.35E-04 / 2.96E-02
Landfill (Plastics / Pulp)	kg	4.93E-04 / 1.97E-02
Incineration (Plastics / Pulp)	kg	1.97E-03 / 7.90E-02
Biogenic carbon contained in packaging		2.27E-03
Direct emissions to ambient air, soil, and water	kg	0.00E+00
VOC content	g/m ³	<0.001

¹VOC content determined in accordance to "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers – version 1.2". CA Specification 01350.

Since facing is attached to the insulation products and the only facing impact in A5 is from pallet waste, which is already reported for the insulation portion, no additional impact has been included here for the facing material.

4.5 Use (B1 - B7)

Insulation is a passive device that requires no extra utilities or maintenance to operate over its useful life. Thus, these modules were not included in the system boundary.

4.6 Reference Service Life

 Table 15. Reference Service Life

Name	Unit	Value
RSL	years	75
Declared product properties (at the gate) and finishes, etc	Will meet declared properties when installed pe	
		manufacturer instructions
Design application parameters (if instructed by the manufacturer), including		Install per product instructions
references to the appropriate practices and application codes		
An assumed quality of work, when installed in accordance with the	Will meet	: R-value and other product specifications
manufacturer's instructions	when i	nstalled per manufacturer instructions
Outdoor environment, (if relevant for outdoor applications), e.g. weathering,		N/A
pollutants, UV and wind exposure, building orientation, shading, temperature		
Indoor environment, (if relevant for indoor applications), e.g. temperature,		Product should be kept dry
moisture, chemical exposure		
Use conditions, e.g. frequency of use, mechanical exposure	N/A	
Maintenance, e.g. required frequency, type and quality of replacement	N/A	
components		

4.7 End-of-Life (C1-C4)

No extra equipment or utilities are needed during deconstruction and demolition to remove insulation. Also, although reuse and recycling of fiberglass insulation at its end of life is possible, there are no formal programs for collection and transport. It is assumed that all product is sent to landfill at end of life. For these reasons, the C1 and C3 modules were not included in the system boundary.

Table 16. End-of-Life summary (C2) for 1 m^2 700 Series Fiberglas[™] insulation at $R_{SI} = 1$.

	End-of-life	Unit Value		
Assumptions	s for scenario development	Although reuse and recycling of fiberglass insulation at its end of life is possible, there are no formal programs for collection and transport. It is assumed that all product is sent to landfill at end of life.		
Collection	Collected separately	kg	0.00E+00	
process	Collected with mixed construction waste	kg	2.25E+00	
	Reuse	kg	N/A	
Docovon	Recycling	kg	N/A	
Recovery	Energy recovery	kg	N/A	
	Landfill	kg	0.00E+00	
Disposal	Product or material for final disposition (landfill)	Kg	0.00E+00	
Removals of	biogenic carbon (excluding packaging)	kg CO ₂	0.00E+00	

Table 17. End-of-Life summary (C2) for 1 m² facing materials.

table 17. Eria-oj-Lije suminiary (C2) joi i mi- jacing materials.					
	End-of-life	Unit	Foil Reinforced Kraft	ASJ Max	
Assumptions	for scenario development	Although reuse and recycling of fiberglass insulation at its end of life i possible, there are no formal programs for collection and transport. It assumed that all product is sent to landfill at end of life.			
Collection	Collected separately	kg 0.00E+00 0.00E+00			
process	Collected with mixed construction waste	kg	1.03E-01	1.61E-01	
	Reuse		N/A	N/A	
Disposition	Recycling	kg	N/A	N/A	
Disposition	Energy recovery	kg	N/A	N/A	
	Landfill	kg	0.00E+00	0.00E+00	
Disposal	Product or material for final disposition (landfill)	l) Kg 0.00E+00 0.00E+00			
Removals of	biogenic carbon (excluding packaging)	kg CO ₂ 0.00E+00 0.00E+00			

Table 18. End-of-Life summary (C4) for 1 m^2 700 Series FiberglasTM insulation at $R_{SI} = 1$.

	, , , , , ,			
	End-of-life	Unit Value		
Assumptions	for scenario development	Although reuse and recycling of fiberglass insulation at its end of life is possible, there are no formal programs for collection and transport. It is assumed that all product is sent to landfill at end of life.		
Collection	Collected separately	kg	0.00E+00	
process	Collected with mixed construction waste	kg	0.00E+00	
	Reuse	kg	N/A	
Docovery	Recycling	kg	N/A	
Recovery	Energy recovery	kg	N/A	
	Landfill	kg	0.00E+00	
Disposal	Product or material for final disposition (landfill)	Kg	2.25E+00	
Removals of	biogenic carbon (excluding packaging)	kg CO ₂	0.00E+00	

Table 19. End-of-Life summary (C4) for 1 m² facing materials.

	End-of-life	Unit	Foil Reinforced Kraft	Fiberglass Air Stream Mat		
Assumptions	for scenario development	Although reuse and recycling of fiberglass insulation at its end of life is possible, there are no formal programs for collection and transport. It assumed that all product is sent to landfill at end of life.				
Collection	Collected separately	kg 0.00E+00 0.00E+00				
process	Collected with mixed construction waste	kg	0.00E+00	0.00E+00		
	Reuse	kg	N/A	N/A		
Disposition	Recycling	kg	N/A	N/A		
Disposition	Energy recovery	kg	N/A	N/A		
	Landfill	kg	0.00E+00			
Disposal	Product or material for final disposition (landfill)) Kg 1.03E-01 1.61E-01				
Removals of	biogenic carbon (excluding packaging)	kg CO ₂ 0.00E+00 0.00E+00				

4.8 Re-use Phase

Although reuse and recycling of fiberglass insulation at its end of life is possible, there are no formal programs for collection and transport. It is assumed that all product is sent to landfill at end of life.

Table 20. Reuse, Recovery and/or Recycling

Name	Unit	Value
Net energy benefit from energy recovery from waste treatment as declared as exported energy in C3	MJ	N/A
Net energy benefit from thermal energy due to treatment of waste declared as exported energy in C4	MJ	N/A
Net energy benefit from material flow declared in C3 for energy recovery	MJ	N/A
Process and conversion efficiencies		N/A
Further assumptions for scenario development		N/A

5. LCA: Results

Results of the Life Cycle Assessment are presented below, beginning in Table 24. It is noted that LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. All values in the tables below are rounded to three significant digits. The following impact indicators, specified by the PCR, are reported below:

Table 21. Life Cycle Impact Assessment Indicators and characterization methods used.

Abbreviation	Impact Category	Unit	Characterization Method
GWP 100a	Global Warming Potential	kg CO₂ eq	IPCC 2013
ODP	Ozone Depletion Potential	kg CFC11 eq	TRACI 2.1
AP	Acidification Potential	kg SO₂ eq	TRACI 2.1
EP	Eutrophication Potential	kg N eq	TRACI 2.1
SFP	Smog Formation Potential	kg O₃ eq	TRACI 2.1
ADP _{fossil}	Abiotic Resource Depletion Potential of Non-renewable (fossil) energy resources (ADP _{fossil})	MJ, LHV	CML-baseline v4.7

These impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development, however the EPD users shall not use additional measures for comparative purposes.

Table 22. Additional transparency indicators used.

Resources	Unit	Waste and Outflows	Unit
RPR _E : Renewable primary energy used as energy carrier (fuel)	[MJ, LHV]	HWD: Hazardous waste disposed	[kg]
RPR _M : Renewable primary resources with energy content used as material	[MJ, LHV]	NHWD: Non-hazardous waste disposed	[kg]
NRPR _E : Non-renewable primary resources used as an energy carrier (fuel)	[MJ, LHV]	HLRW : High-level radioactive waste, conditioned, to final repository	[kg] or [m³]
NRPR _M : Non-renewable primary resources with energy content used as material	[MJ, LHV]	ILLRW : Intermediate- and low-level radioactive waste, conditioned, to final repository	[kg] or [m ³]
SM: Secondary materials	[kg]	CRU: Components for re-use	[kg]
RSF: Renewable secondary fuels	[MJ, LHV]	MR: Materials for recycling	[kg]
NRSF: Non-renewable secondary fuels	[MJ, LHV]	MER: Materials for energy recovery	[kg]
RE: Recovered energy	[MJ, LHV]	EE : Recovered energy exported from the product system	MJ, heating value ([Hi] lower heating value) per energy carrier

Table 23. Carbon Emissions and Removals

Parameter	Unit
BCRP: Biogenic Carbon Removal from Product	[kg CO2]
BCEP: Biogenic Carbon Emission from Product	[kg CO2]
BCRK: Biogenic Carbon Removal from Packaging	[kg CO2]
BCEK: Biogenic Carbon Emission from Packaging	[kg CO2]
BCEW : Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes	[kg CO2]
CCE: Calcination Carbon Emissions	[kg CO2]
CCR: Carbonation Carbon Removals	[kg CO2]
CWNR : Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in Production Processes	[kg CO2]

Table 24. Life Cycle Impact Assessment (LCIA) results for 1 m² 700 Series Fiberglas™ insulation at R_{SI} = 1

Impact Category	Units	A1-A3	A4	A5	C2	C4
GWP 100a (2013)	kg CO ₂ eq	6.21E+00	9.78E-02	9.22E-02	2.87E-02	6.04E-03
ODP	kg CFC 11 eq	1.41E-07	1.39E-09	1.03E-10	4.07E-10	9.60E-11
AP	kg SO ₂ eq	2.12E-02	2.33E-04	3.38E-05	6.85E-05	5.13E-05
EP	kg N eq	2.83E-03	1.59E-05	2.66E-06	4.66E-06	3.25E-06
SFP	kg O₃ eq	2.73E-01	5.94E-03	5.89E-04	1.74E-03	1.61E-03
ADP _{fossil}	MJ, LHV	1.10E+02	1.30E+00	8.88E-02	3.82E-01	7.83E-02

Table 25. Life Cycle Impact Assessment (LCIA) results for 1 m² Foil Reinforced Kraft facing

Impact Category	Units	A1-A3	A4	A5	C2	C4
GWP 100a (2013)	kg CO ₂ eq	5.56E-01	1.80E-02	0.00E+00	2.52E-03	2.75E-04
ODP	kg CFC 11 eq	5.64E-09	2.61E-10	0.00E+00	3.65E-11	4.37E-12
AP	kg SO ₂ eq	3.03E-03	9.54E-05	0.00E+00	1.33E-05	2.33E-06
EP	kg N eq	2.98E-04	6.25E-06	0.00E+00	8.74E-07	1.48E-07
SFP	kg O₃ eq	3.89E-02	2.95E-03	0.00E+00	4.12E-04	7.32E-05
ADP _{fossil}	MJ, LHV	6.23E+00	2.45E-01	0.00E+00	3.43E-02	3.56E-03

Table 26. Life Cycle Impact Assessment (LCIA) results for 1 m² ASJ Max facing

Tomoro work with	· ·	, , , , , , , , , , , , , , , , , , , ,	, ,			
Impact Category	Units	A1-A3	A4	A5	C2	C4
GWP 100a (2013)	kg CO ₂ eq	7.18E-01	2.83E-02	0.00E+00	3.95E-03	4.32E-04
ODP	kg CFC 11 eq	1.00E-08	4.11E-10	0.00E+00	5.74E-11	6.86E-12
AP	kg SO ₂ eq	3.74E-03	1.50E-04	0.00E+00	2.10E-05	3.67E-06
EP	kg N eq	3.62E-04	9.82E-06	0.00E+00	1.37E-06	2.32E-07
SFP	kg O₃ eq	4.87E-02	4.63E-03	0.00E+00	6.48E-04	1.15E-04
ADP _{fossil}	MJ, LHV	9.30E+00	3.85E-01	0.00E+00	5.39E-02	5.60E-03

Table 27. Resource Use Indicator Results for 1 m^2 700 Series FiberglasTM insulation at $R_{SI} = 1$

Resource Use	Unit	A1 – A3	A4	A5	C2	C4
RPRE	[MJ, LHV]	1.40E+01	2.09E-03	3.51E-04	6.14E-04	3.46E-04
RPRM	[MJ, LHV]	2.63E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRPRE	[MJ, LHV]	1.27E+02	1.30E+00	8.92E-02	3.82E-01	7.86E-02
NRPR _M	[MJ, LHV]	3.34E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SM	[kg]	9.97E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RE	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	3.47E-02	4.38E-05	4.39E-05	1.29E-05	2.72E-06

Table 28. Resource Use Indicator Results for 1 m² Foil Reinforced Kraft facing

Resource Use	Unit	A1 – A3	A4	A5	C2	C4
RPRE	[MJ, LHV]	2.10E+00	3.94E-04	0.00E+00	5.51E-05	1.57E-05
RPR _M	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRPRE	[MJ, LHV]	6.43E+00	2.46E-01	2.46E-01	3.44E-02	3.58E-03
NRPR _M	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SM	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RE	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m ³]	2.34E-03	8.25E-06	0.00E+00	1.15E-06	1.24E-07

Table 29. Resource Use Indicator Results for 1 m² ASJ Max facing

Resource Use	Unit	A1 – C4	A1 – A3	A4	A5	C2	C4
RPRE	[MJ, LHV]	2.71E+00	2.71E+00	6.20E-04	0.00E+00	8.67E-05	2.47E-05
RPR _M	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRPRE	[MJ, LHV]	1.01E+01	9.62E+00	3.86E-01	0.00E+00	5.40E-02	5.62E-03
NRPRM	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SM	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RE	[MJ, LHV]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	$[m^3]$	4.28E-03	4.27E-03	1.30E-05	0.00E+00	1.81E-06	1.95E-07

Table 30. Waste and Output Flow Indicator Results for 1 m^2 700 Series FiberglasTM insulation at $R_{SI} = 1$

Resource Use	Unit	A1 – A3	A4	A5	C2	C4
HWD	[kg]	1.16E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	5.36E-01	0.00E+00	8.09E-02	0.00E+00	2.25E+00
HLRW	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ILLRW	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR	[kg]	2.36E-02	0.00E+00	2.97E-01	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

19

Table 31. Waste and Output Flow Indicator Results for 1 m² Foil Reinforced Kraft facing

Resource Use	Unit	A1 – A3	A4	A5	C2	C4
HWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HLRW	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ILLRW	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Table 32. Waste and Output Flow Indicator Results for 1 m² ASJ Max facing

Resource Use	Unit	A1 – A3	A4	A5	C2	C4
HWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NHWD	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HLRW	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ILLRW	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Table 33. Carbon Emissions and Removals Indicator Results for 1 m^2 700 Series Fiberglas[™] insulation at $R_{SI} = 1$

Resource Use	Unit	A1 - A3	A4	A5	C2	C4
BCRP	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEP	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCRK	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCE	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCR	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CWNR	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Table 34. Carbon Emissions and Removals Indicator Results for 1 m² Foil Reinforced Kraft facing

Resource Use	Unit	A1 – A3	A4	A5	C2	C4
BCRP	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEP	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCRK	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCE	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCR	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CWNR	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Table 35. Carbon Emissions and Removals Indicator Results for 1 m² ASJ Max facing

Resource Use	Unit	A1 - A3	A4	A5	C2	C4
BCRP	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEP	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCRK	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEK	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
BCEW	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCE	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CCR	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CWNR	[kg CO ₂]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Calculating Environmental Impact Values for Products with Specific Properties

Results presented above are representative of an average product corresponding to the functional unit of RSI = 1 $\text{m}^2\text{K/W}$, expressed in metric units. That is equivalent to R = 5.68 in US Customary Units. The following scaling factors have been provided to assist in understanding the impacts for the specific, individual products that are commercially available.

Table 36. Scaling Factors for 700 series Fiberglas[™] insulation

700 series Fiberglas™		Thickness, in (mm)				
		1.0 (25)	1.5 (38)	2.0 (51)	2.2 (56)	3.0 (76)
Density, lb/ft3 (kg/m3)	3.0 (48)	0.54	0.81	1.08	1.35	1.62
	6.0 (96)	1.08	1.62	2.16	2.71	3.25
	7 (112)	1.26	1.89	2.53		

Table 37. A1-A3 GWP 100a (2013) Results for 1 m² 700 series Fiberglas™ insulation and 1 m² Foil Reinforced Kraft Facing

		1m² 700 series Fiberglas™	1 m² Foil Reinforced Kraft
Impact Category		insulation	Facing
	Units	A1-A3	A4
GWP 100a (2013)	kg CO₂ eq	6.21E+00	5.56E-01

Below is an example demonstrating how to use the product scaling factors in combination with the impact values. The example calculation uses the A1-A3 GWP 100a impact value for 1 m² 700 series Fiberglas board insulation (6.21E+00 kg CO_2 eq) and the scaling factor for a product that has a density of 3.0 lb/ft³ and a thickness of 1.5 in (scaling factor = 0.81), and then adds the A1-A3 GWP 100a impact value for 1 m² Foil Reinforced Kraft (FRK) facing (5.56E-01 kg CO_2 eq).

Sample Calculation:

 $5.59E+00 \text{ kg CO}_2\text{eq} = 6.21E+00 \text{ kg CO}_2\text{eq} \times 0.81 + 5.56E-01 \text{ kg CO}_2\text{eq}$

6. LCA: Interpretation

6.1 Interpretation

The Product Stage (A1-A3) is clearly the primary contributor to all impact categories. Within A1-A3, A3 manufacturing, which includes electricity during production and air emissions from production activities, is the largest contributor.

The primary data used for this study represent production of 700 series Fiberglas™ insulation board at a single manufacturing site in Newark, OH, USA from January 2023 through December 2023 using consistent methods and materials.

6.2 Assumptions and Limitations

The ability of LCA to consider the entire life cycle of products makes it an attractive tool for the assessment of potential environmental impacts. Nevertheless, similar to other environmental management analysis tools, LCA has several limitations related to data quality and unavailability of potentially relevant data. It should be kept in mind that the impact assessment results are relative expressions and do not predict impacts on category endpoints, exceeding thresholds, or risks.

The study was conducted by including the relevant system boundaries and best available data for 700 series Fiberglas™ insulation board products, using a consistent data collection method and timeframe. In cases where data were reported for the entire facility rather than for the specific insulation materials product, mass allocation was used to allocate the facility-wide impacts to the specific product. This assumes that all products equally consume facility inputs and contribute to facility outputs.

7. Additional Environmental Information

7.1 Environment and Health during Manufacture

Depending on the plant facility, the following environmental equipment may be used to control emissions: electrostatic precipitator, scrubber, and/or fabric filter (baghouse).

7.2 Energy Savings During Use

Insulation is a passive device that requires no extra utilities to operate over its useful life. Insulation of a building and its components may be responsible for reducing the energy burden associated with heating and cooling of the building.

7.3 Environment and Health during Installation

This product is considered an article. The 29 CFR 1910.1200(c) definition of an article is as follows: "Article" means a manufactured item other than a fluid or particle, (i) which is formed to a specific shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part upon its shape or design during end use, and (iii) which under normal conditions of use does not release more than very small quantities, e.g., minute or trace amounts of a hazardous chemical (as determined under paragraph (d) of this section), and does not pose a physical hazard or health risk to employees.

Manufactured articles which meet the definition of the Canadian Hazardous Products Act (any article that is formed to a specific shape or design during manufacture, the intended use of which when in that form is dependent in whole or in part on its shape or design, and that, when being installed, if the intended use of the article requires it to be installed, and under normal conditions of use, will not release or otherwise cause an individual to be exposed to a hazardous product) are not regulated by the Canadian Hazardous Products Regulation SOR/2015-17.

The product's Safe Use Instruction Sheet includes exposure guidelines, engineering controls, and individual protection measures. The following individual protection measures can be considered:

- Eye/face protection Wear safety glasses with side shields (or goggles)
- Skin and body protection Wear protective gloves, long-sleeved shirt and long pants
- Respiratory protection When facing airborne/dust concentration above the exposure limits, use an
 appropriate certified respirator. A properly fitted NIOSH approved disposable N95 type dust respirator or
 better is recommended.
- General hygiene instructions Wash hands before breaks and immediately after handling products.
 Remove and wash contaminated clothing before re-use.

No extraordinary effects or environmental impacts are expected due to destruction of the product by fire, water, or mechanical means.

7.5 Delayed Emissions

No delayed emissions are expected from this product.

7.6 Environmental Activities and Certifications

700 series Fiberglas™ insulation board products have the following certification and sustainable features:

- Certified by SCS Global Services to contain recycled content. Consult the <u>SCS Global Services Green</u>
 Products Guide for detailed recycled content information.
- HPD

7.7 Further Information

Further information on the product can be found on the manufacturers' website at www.owenscorning.com.

.....

8. References

- LCA Report Life Cycle Assessment of Owens Corning Technical Insulation Products
- CML-IA, baseline v4.7. Center of Environmental Science (CML) at Leiden University, The Netherlands.
- IPCC 2018. Intergovernmental Panel on Climate Change's fifth assessment report.
- ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- ISO 14040: 2006 Environmental Management Life cycle assessment Principles and Framework
- ISO 14044: 2006/AMD 1:2017/ AMD 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements. Version 4.0. UL Environment. Mar. 2022.
- PCR Guidance for Building-Related Products and Services Part B: Mechanical, Specialty, Thermal, and Acoustic Insulation Product EPD Requirements. Version 1.0. Sept. 2019.
- ISO 21930: 2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- SCS Type III Environmental Declaration Program: Program Operator Manual. V12.0 December 2023. SCS Global Services.
- TRACI 2.1 v1.05. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI). U.S. EPA.
- ASTM C165, Standard Test Method for Measuring Compressive Properties of Thermal Insulations
- ASTM C303, Standard Test Method for Dimensions and Density of Preformed Block and Board-Type Thermal Insulation
- ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation
- ASTM C423, Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method
- ASTM C692, Standard Test Method for Evaluating the Influence of Thermal Insulations on External Stress Corrosion Cracking Tendency of Austenitic Stainless Steel
- ASTM C795, Standard Specification for Thermal Insulation for Use in Contact with Austenitic Stainless Steel
- ASTM C871, Standard Test Methods for Chemical Analysis of Thermal Insulation Materials for Leachable Chloride, Fluoride, Silicate, and Sodium Ions
- ASTM C1104, Standard Test Method for Determining the Water Vapor Sorption of Unfaced Mineral Fiber Insulation
- ASTM C1136, Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation
- ASTM C1338, Standard Test Method for Determining Fungi Resistance of Insulation Materials and Facings
- ASTM C1617, Standard Practice for Quantitative Accelerated Laboratory Evaluation of Extraction Solutions
 Containing lons Leached from Thermal Insulation on Aqueous Corrosion of Metals
- ASTM C1936, Standard Test Method for Corrosiveness of Mineral-Fiber or Cellulosic-Fiber Insulation by Comparison to Control
- ASTM D774/D774M, Standard Test Method for Bursting Strength of Paper
- ASTM E84, Standard Test Method for Surface Burning Characteristics of Building Materials
- ASTM E96, Standard Test Methods for Water Vapor Transmission of Materials
- ASTM G21, Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi
- ASTM G22, Standard Practice for Determining Resistance of Plastics to Bacteria
- California Specification 01350 (CDPH), Standard Method for the Testing and Evaluation of Volatile Organic
 Chemical Emissions from Indoor Sources Using Environmental Chambers, v1.2

- ICC International Mechanical Code
- UL 723, Test for Surface Burning Characteristics of Building Materials
- ULC S102, Surface Burning Characteristics of Building Materials and Assemblies
- ULC S110, Standard Methods of Tests for Air Ducts
- SCS Global Services Guideline for Claims of "Made with Renewable Energy" or "Reduced Carbon Footprint" Based on Power Purchase Agreement, February 2018

For more information, contact:

Declaration Owner

Owens Corning Insulating Systems, LLC One Owens Corning Parkway, Toledo, OH, USA 1-800-GET-PINK (1-800-438-7465) www.owenscorning.com

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.510.452.8000 | fax +1.510.452.8001